CANARINA:

Home

Testimonials

Contact us

DEMOS

About us

Press

World

Clients

FAQ

Brochure

Price

 

DISPER:

DISPER

Solutions

Advantages

Order & price

Data I

Data II

Data III

Data IV

Average

Import

Commands

Algorithms I

Algorithms II

Algorithms III

Algorithms IV

Algorithms V

Emissions

Graphs I

Graphs II

Pollutants I

Pollutants II

Google maps

Models and GIS

Odor

Flare stacks

3D and 2D

 

 

Algorithms III · stack testing

                                     

Applications 2: air pollution environment · air pollution dispersion modeling · air monitoring · vehicle emission modeling · air pollutants · air quality modeling software · air emission modeling software · indoor air pollution modeling · air pollution cars · indoor air pollution · air pollution analysis · air pollution mapping · air pollution 

 

All Conditions  - Distance Less Than Distance to Final Rise.

Where gradual rise is to be estimated for unstable, neutral, or stable conditions, if the distance downwind from source to receptor, x, is less than the distance to final rise:

he=hs+1.60 [(Fb x2)1/3/us]      (21)

This height will be used only for buoyancy dominated conditions; should it exceed the final rise for the appropriate condition. For momentum dominated conditions, the following equations are used to calculate a distance dependent momentum plume rise:

a) unstable conditions:

he=hs+[3Fmx/(betj2us2)]1/3      (22)

where x is the downwind distance, with a maximum value xmax:

xmax=4ds(vs+3us)/(vsus)   for Fb=0                 (23)

xmax=49 Fb5/8             for 0 < Fb < 55 m2s3      (24)

xmax=119 Fb2/5            for Fb > 55 m2s3         (25)

b) stable conditions:

he=hs+(3Fm)1/3{sin[x s1/2/us]}1/3[betj2uss1/2]-1/3   (26)

where x is the downwind distance, with a maximum value xmax:

xmax=0.5 pi us/s1/2            (27)

The jet entrainment coefficient, betj, is given by,

betj=(1/3)+(us/vs)       (28)

If the distance-dependent momentum rise exceeds the final rise for the appropriate condition, then the final rise is substituted instead.

The Dispersion Parameters

Point Source Dispersion Parameters:

Equations that approximately fit the Pasquill-Gifford curves are used to calculate sigy and sigz (in meters) for the rural mode. The equations used to calculate sigy are of the form:

sigy=465.11628 x tan (TH)        (29)

where:

TH=0.017453293[c  - d ln(x)] (30)

In both Equations the downwind distance x is in kilometers. The equation used to calculate sigz is of the form:

sigz=axb    (31)

where the downwind distance x is in kilometers and sigz is in meters.

Procedures Used to Account for Buoyancy-Induced Dispersion.

The method of Pasquill is used to account for the initial dispersion of plumes. With this method, the effective vertical dispersion sze is calculated as follows:

sigze=[sigz2 +(Dh/3.5)]1/2        (32)

where sigz is the vertical dispersion due to ambient turbulence and Dh is the plume rise due to momentum or buoyancy. The lateral plume spread is:

sigye=[sigy2 +(Dh/3.5)]1/2        (33)

where sigy is the lateral dispersion due to ambient turbulence. It should be noted that Dh is the distance-dependent plume rise if the receptor is located between the source and the distance to final rise, and final plume rise if the receptor is located beyond the distance to final rise.

 

 

 

            (noise)            (water)          (electrosmog)        

 

 

 

stack testing

 

                                                                               

Canarina Environmental Software

Software for environmental consulting firms

Canary Islands, Spain 

e-mail: contact

 

 

  

European Union · network on Pollution

Member of MAPO: European network on Marine Pollution.

 

 

       Flag of Portugal 

 

    english:           

 

 castellano:        italiano:       

 

 français:      português:  

 

deutsch:

 

 

 castellano: DIS CUS DES  RAD   english: DIS CUS DES

 

deutsch: DIS CUS  DES  RAD   português: DIS CUS DES RAD  

 

italiano:   DIS CUS  DES RAD français:  DIS CUS DES RAD