[71] Chang JS, Binkowski FS, Seaman NL, Byun DW, McHenry JN, Samson PJ,

Stockwell WR, Walcek CJ, Madronich S, Middleton PB, Pleim JE, and

Landsford HL (1990), The regional acid deposition model and engineering

model, NAPAP SOS/T Report 4, in National Acid Precipitation Assessment

Program, Acidic Deposition: State of Science and Technology, Volume I,

Washington, D.C.

[72] DeMore WB, Sander SP, Golden DM, Hampson RF, Kurylo MJ, Howard CJ,

Ravishankara AR, Kolb CE, and Molina MJ (1994), Chemical kinetics and

photochemical data for use in stratospheric modeling: Evaluation number 11,

JPL Pub. 94-26, National Aeronautics and Space Administration, Jet Propulsion

Laboratory, Pasadena, CA.

[73] Demerjian KL, Schere KL, and Peterson JT (1980), Theoretical estimates of

actinic (spherically integrated) flux and photolytic rate constants of atmospheric

species in the lower troposphere, in Advances in Environmental Science and

Technology, Vol. 10, by John Wiley & Sons, Inc., 369-459.

[74] Elterman L (1968), UV, visible, and IR attenuation for altitudes to 50 km,

AFCRL-68-0153, Air Force Cambridge Res. Lab. Bedford, MA.

[75] Stephens GL (1978), Radiation profiles in extended water clouds. II.

Parameterization schemes, J. Atmos. Sci. 35, 2123-2132.

[76] Gery MW, Whitten GZ, Killus JP, and Dodge MC (1989), A photochemical

kinetics mechanism for urban and regional scale computer modeling, J.

Geophys. Res. 94, 12,925-12,956.

[77] Stockwell WR, Middleton P, and Chang JS (1990), The second generation

regional acid deposition model chemical mechanism for regional air quality

modeling, J. Geophys. Res. 95(D10), 16,343-16,367.

[78] Carter WPL (1994), Development of ozone reactivity scales for volatile organic

compounds, Journal of the Air and Waste Management Association, 44, 881-


[79] Carter WPL (2000) Documentation of the SAPRC-99 Chemical Mechanism for

VOC Reactivity Assessment, Final report to the California Air Resources

Board, Contract No. 92-329 and 95-308.

[80] Carter WPL and Atkinson R (1996), Development and evaluation of a detailed

mechanism for the atmospheric reactions of isoprene and NOx, Int. J. Chem.

Kinet. 28, 497-530.

[81] Carter WPL (1996), Condensed atmospheric photooxidation mechanisms for

isoprene, Atmos. Environ. 24, 4275-4290.

[82] Jacob DJ (2000), Heterogeneous chemistry and tropospheric ozone, Atmos.

Environ., 34, 2131-2159.

[83] Gong W and Cho HR (1993), A numerical scheme for the integration of the gasphase

chemical rate equations in three-dimensional atmospheric models, Atmos.

Environ. 27A, 2,147- 2,160.

[84] Gear CW (1971), Numerical Initial Value Problems in Ordinary Differential

Equations, Prentice-Hall, Englewood Cliffs, NJ.

[85] Jacobson M and Turco RP (1994), SMVGEAR: A sparse-matrix, vectorized

Gear code for atmospheric models, Atmos. Environ. 28, 273-284.

[86] Carmichael GR, Peters LK, and Kitada T, A second generation model for

regional-scale transport/chemistry/deposition, Atmos. Environ., 20, 173-188.

[87] Mathur R, Young JO, Schere KL, and Gipson GL (1998), A comparison of

numerical techniques for solution of atmospheric kinetic equations, Atmos.

Environ., 32, 1,535-1,553.

[88] Young JO, Sills E, and Jorge D (1993), Optimization of the Regional Oxidant

Model for the Cray Y-MP, EPA/600/R-94-065, U.S. EPA, Research Triangle

Park, NC.



n1101 - n1102 - n1103 - n1104 - n1105 - n1106 - n1107 - n1108 - n1109 - n1110 - n1111 - n1112 - n1113 - n1114 - n1115 - n1116 - n1117 - n1118 - n1119 - n1120 - n1121 - n1122 - n1123 - n1124 - n1125 - n1126 - n1127 - n1128 - n1129 - n1130 - n1131 - n1132 - n1133 - n1134 - n1135 - n1136 - n1137 - n1138 - n1139 - n1140 - n1141 - n1142 - n1143 - n1144 - n1145 - n1146 - n1147 - n1148 - n1149 - n1150


   Flag of Portugal 


 castellano: DISPER CUSTIC DESCAR RADIA    italiano:     


 français:    português:  





deutsch: DIS CUS  DES  RAD

castellano: DIS CUS DES  RAD   english: DIS CUS DES RAD  


 português: DIS CUS DES RAD   italiano:   DIS CUS  DES RAD


français:  DIS CUS DES RAD