CANARINA:

Startseite

Über uns

Kontakt

Kunden

Zeugnis

DEMO

Presse

Welt

FAQ

 

DISPER:

DISPER

Anwendungen

Vorteile

Daten I

Daten II

Daten III

Daten IV

Daten V

Durchschnitt

Funktionen

Algorithmen I

Algorithmen II

Algorithmen III

Grafik I

Grafik II

Schadstoffe I

Schadstoffe II

Schadstoffe III

Schadstoffe IV

Schadstoffe V

Schadstoffe VI

Topographie

Importieren

Google maps

Geruchseinheit

Gasfackel

Preis

GIS

 

 

 

 

 

 

Schadstoffe VI


Stickstoffmonoxid tritt im menschlichen Körper als Botenstoff auf und findet in der Behandlung unter anderem von Angina Pectoris Anwendung.

Distickstofftrioxid ist in kondensierter Form (-21 °C) tiefblau und in fester Form (-102 °C) blassblau gefärbt. Bei Temperaturen oberhalb 0 °C zerfällt die Verbindung in Stickstoffmonoxid und Stickstoffdioxid. Aufgrund dieser Eigenschaft kann man den Siedepunkt nicht feststellen.
Inhaltsverzeichnis

Nitrose Gase 


Nitrose Gase ist die Trivialbezeichnung für das Gemisch aus Stickstoffmonoxid (NO) und Stickstoffdioxid (NO2). Nitrose Gase entstehen unter anderem bei der Reaktion von Salpetersäure (HNO3) mit organischen Stoffen oder Metallen. (Bei der Reaktion von Salpetersäure mit Silber und Kupfer entsteht sehr viel NOx). Eine weitere Ursache für Stickoxide sind Abgase, die bei der Verbrennung fossiler Brennstoffe, wie beispielsweise Kohle oder Öl, entstehen.

Die typisch rotbraunen Dämpfe der nitrosen Gase werden im Wesentlichen durch das Stickstoffdioxid (NO2) hervorgerufen. Nitrose Gase haben einen charakteristischen stechenden Geruch und können mit Verzögerung von mehr als 24 Stunden (Latenzzeit) nach dem Einatmen noch zu einem Lungenödem führen. Bei Männern kann zudem Impotenz bei häufigerem Einatmen als Spätfolge eintreten.

Auswirkungen von Stickoxiden 


* Reizung und Schädigung der Atmungsorgane (insbesondere Stickstoffdioxid)
* Entstehung des Sauren Regens: Bildung von Salpetersäure (HNO3) durch Reaktion von (2 NO2 + H2O → HNO3 + HNO2) oder durch Aufnahme von N2O5 in Aerosolpartikel und nachfolgender Bildung von NO3- in der flüssigen Phase.

* Smogbildung
* Ozonbildung unter Einfluss von UV-Strahlung

NOx in der Feuerung 

Stickoxide werden in der Regel entsprechend ihrer Quellen und ihres Bildungsmechanismus in 3 Arten unterteilt:

* thermisches NOx
* Brennstoff- oder fuel-NOx
* promptes NOx

Die in diesem Zusammenhang erwähnte „NOx“ setzen sich in der Feuerung zu etwa 95 % NO und 5 % NO2 zusammen. Mit Hilfe der Reaktionskinetik lässt sich die Änderung der Konzentrationen des NOx beschreiben. Hierbei sind letztlich die Konzentrationen von N2 und O als auch die Temperatur maßgebliche Einflussfaktoren:

Der Exponentialterm ist der Ansatz über die Arrhenius-Gleichung, cN2 und cO die Konzentrationen zu Beginn der Reaktion.

Thermisches NOx 


Die Bezeichnung „thermisch“ bezieht sich auf die relativ hohen Temperaturen, die zur Initiierung der Bildungsreaktion des thermischen NOx über N2 benötigt werden. Die Stickstoffquelle des thermischen NOx ist der in der Verbrennungsluft vorhandene Stickstoff, der zur Oxidation des N2 nötige Sauerstoff entstammt ebenfalls der Verbrennungsluft. Zeldovich beschreibt die Entstehung in zwei beziehungsweise drei Schritten, das Schema ist als einfacher beziehungsweise erweiterter „Zeldovich-Mechanismus“ bekannt.

Mit der Bildung von thermischem NOx ist bei Verbrennungstemperaturen ab etwa 1 250 °C zu rechnen, die Bildungsrate nimmt mit der Temperatur exponentiell zu. Unterhalb dominiert bei stickstoffhaltigen Brennstoffen das so genannten „Brennstoff-NOx“ oder „fuel-NOx“. Ebenso haben der angebotene Sauerstoff und die Verweilzeit der Reaktionspartner in der Verbrennungszone einen Einfluss auf die NOx-Entstehungsrate. Untersuchungen zur Stickoxidbildung am Lichtbogenofen belegen, dass neben den technischen Verbrennungsprozessen fossiler Brennstoffe wie Erdöl oder Erdgas auch O2/N2-Plasmen gute Bildungsbedingungen für Stickoxide aufweisen.

Brennstoff-NOx 


Quelle dieser NOx-Art sind die im Brennstoff gebundenen Anteile an Stickstoff, die während der Verbrennung in NOx umgesetzt werden. Die mitgeführte Menge an Stickstoff ist stark brennstoffabhängig, dementsprechend variieren auch die durch die Verbrennung entstehenden Anteile von thermischem und Brennstoff-NOx im Rauchgas.

Man unterscheidet bei festen Brennstoffen zwei Arten der Stickstofffreisetzung. Die homogene Freisetzung beschreibt die Ausgasung des im Brennstoff gebundenen Stickstoffs mit den flüchtigen Bestandteilen während die Heterogene den Abbrand des Restkoks beschreibt.

Wesentliche Quelle für Brennstoff-NOx sind die flüchtigen Bestandteile des Brennstoffes.


Brennstoff-NOx entsteht ab Temperaturen um etwa 800 °C vorwiegend in den Flammenfronten der Feuerungsanlagen. Hierbei durchläuft der mitgeführte Brennstoff mehrere Reaktionsschritte, die über Blausäure (HCN) und Hydrazin (NHn) zu NO und N2 führen. N2 und NO können mit Kohlenwasserstoff-Radikalen (CHn) eine Rückreaktion zu HCN durchlaufen („Reburning“) und hierbei wieder zu NO oder aber zu molekularem Stickstoff (N2) umsetzen. Dadurch erhöht sich in der Summe die Menge an molekularem Stickstoff. Diesen Effekt macht man sich in der so genannten „Brennstoff-Stufung“, einer primären Schadstoff-Minderungsmaßnahme, zu Nutze.
 

 

(wikipedia)

 

 

Mappa delle concentrazioni di SOx generato da tre canna fumaria.

 

 

 

Mappa delle concentrazioni di SOx generato da tre canna fumaria.

 

 

 

 

 

 

         Flag of Portugal 

 

castellano:     italiano:     

 

 français:    português:  

 

deutsch:      english:  

 

castellano: DIS CUS DES  RAD   english: DIS CUS DES RAD  

 

deutsch: DIS CUS  DES  RAD   português: DIS CUS DES RAD  

 

italiano:   DIS CUS  DES RAD     français:  DIS CUS DES RAD